Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)

نویسندگان

  • Sasha Stankovich
  • Richard D. Piner
  • Xinqi Chen
  • Nianqiang Wu
  • SonBinh T. Nguyen
  • Rodney S. Ruoff
چکیده

Graphite nanoplatelets have recently attracted considerable attention as a viable and inexpensive filler substitute for carbon nanotubes in nanocomposites, given the predicted excellent in-plane mechanical, structural, thermal, and electrical properties of graphite. As with carbon nanotubes, full utilization of graphite nanoplatelets in polymer nanocomposite applications will inevitably depend on the ability to achieve complete dispersion of the nano-filler component in the polymer matrix of choice. In this communication, we describe a method for preparing watersoluble polymer-coated graphitic nanoplatelets. We prepare graphite nanoplatelets via the chemical reduction of exfoliated graphite oxide nanoplatelets. Graphite oxide is produced by the oxidative treatment of graphite. It still possesses a layered structure, but is much lighter in color than graphite due to the loss of electronic conjugation brought about during the oxidation. The basal planes of the graphene sheets in graphite oxide are decorated mostly with epoxide and hydroxyl groups, in addition to carbonyl and carboxyl groups, which are located at the edges. These oxygen functionalities alter the van der Waals interactions between the layers of graphite oxide and render them hydrophilic, thus facilitating their hydration and exfoliation in aqueous media. As a result, graphite oxide readily forms stable colloidal dispersions of thin graphite oxide sheets in water. From these stable dispersions, thin ‘‘graphitic’’ nanoplatelets can be obtained by chemical deoxygenation, e.g., removal of the oxygen functionalities with partial restoration of the aromatic graphene network. It is possible that even single graphite sheets (i.e., finite-sized graphene sheets) can be accessed via graphite oxide exfoliation and a subsequent solution-based chemical reduction. In practice, reduction of water-dispersed graphite oxide nanoplatelets results in a gradual decrease in their hydrophilic character, which eventually leads to their irreversible agglomeration and precipitation. However, stable aqueous dispersions of reduced graphite oxide nanoplatelets can be prepared if the reduction is carried out in the presence of an anionic polymer. A stable water dispersion of graphite oxide nanoplatelets, prepared by exfoliation of the graphite oxide (1 mg mL) via ultrasonic treatment (Fisher Scientific FS60, 1 h), was reduced with hydrazine hydrate at 100 uC for 24 h. As the reduction proceeds, the brown-colored dispersion of exfoliated graphite oxide turns black and the reduced nanoplatelets agglomerate and eventually precipitate. This precipitated material could not be re-suspended even after prolonged ultrasonic treatment in water in the presence of surfactants such as sodium dodecylsulfate (SDS) and TRITON X-100, which have been found to successfully solubilize carbon nanotubes. Elemental analyses, coupled with Karl Fisher titration (Galbraith Laboratories), of both graphite oxide and the reduced material indicate that there is a considerable increase in C/O atomic ratio in the reduced material (10.3) compared to that in the starting graphite oxide (2.7). Hence, the reduced material can be described as consisting of partially oxidized graphitic nanoplatelets, given that a fair amount of oxygen is retained even after reduction. The black color of the reduced materials suggests a partial re-graphitization of the exfoliated graphite oxide, as observed by others. In addition to the decrease in the oxygen level, reduction of graphite oxide is accompanied by nitrogen incorporation from the reducing agent (C/N = 16.1). Attempts to reduce graphite oxide in the presence of SDS and TRITON-X100 also failed to produce a stable aqueous dispersion of graphitic nanoplatelets. However, when the reduction was carried out in the presence of poly(sodium 4-styrenesulfonate) (PSS) (Mw = 70000, Sigma-Aldrich, 10 mg mL , 10/1 w/w vs. graphite oxide), a stable black dispersion was obtained. This dispersion can be filtered through a PVDF membrane (0.2 mm pore size, Fisher Scientific) to yield PSS-coated graphitic nanoplatelets that can be re-dispersed readily in water upon mild sonication, forming black suspensions (Fig. 1). At concentrations lower than 0.1 mg mL, the dispersions obtained after a 30-minute ultrasonic treatment appear to be stable indefinitely— samples prepared over a year ago are still homogeneous to date. More concentrated dispersions would develop a small amount of precipitate after several days. However, they never fully settle, even upon months of standing. Elemental analysis of the PSS-coated platelets indicates that it contains y40% polymer as judged by its sulfur content (graphite oxide reduced without any PSS contains no sulfur at all). Its comparatively high oxygen and hydrogen Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60206-3133, USA. E-mail: [email protected]; Fax: +1(847)491-3915; Tel: +1(847)467-6596 Keck Interdisciplinary Surface Science Center, NUANCE, 2220 Campus Drive, #2036, Northwestern University, Evanston, IL 60208, USA. Fax: +1(847)491-5429; Tel: +1(847)491-5505 Department of Chemistry, 2145 Sheridan Rd., Evanston, IL 60208-3133, USA. E-mail: [email protected]; Fax: +1(847)491-7713; Tel: +1(847)467-3347 COMMUNICATION www.rsc.org/materials | Journal of Materials Chemistry

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Reduced Graphene Nanosheets

In this work, the reduced graphene nanosheets were synthesized from pre-exfoliated graphite flakes. The pristine graphite flakes were firstly pre-exfoliated to graphite nanoplatelets in the presence of acetic acid. The obtained graphite nanoplatelets were treated by Hummer’s method to produce graphite oxide sheets and were finally exfoliated to graphene nanosheets by ultrasonication and reducti...

متن کامل

Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors

We report a simple yet versatile method to simultaneously achieve the exfoliation and reduction of graphite oxide. By treating graphite oxide powders in a commercial microwave oven, reduced graphite oxide materials could be readily obtained within 1 min. Extensive characterizations showed that the as-prepared materials consisted of crumpled, few-layer thick and electronically conductive graphit...

متن کامل

Antimony-doped graphene nanoplatelets

Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (Gn...

متن کامل

Hydrophobicity Properties of Graphite and Reduced Graphene Oxide of The Polysulfone (PSf) Mixed Matrix Membrane

Hydrophobicity properties of graphite and green synthesized graphene (gsG) from exfoliated graphite/GO towards polymer membrane characteristic and properties at different weight percentage concentrations (1, 2, 3, 4 and 5 wt. %) were investigated. PSf/graphite and PSf/gsG membranes were characterized in term of hydrophobicity, surface bonding, surface roughness and porosity. FTIR peaks revealed...

متن کامل

Exfoliated graphite/Selenium-Zinc Oxide Nanocomposites for Photodegradation of Organic Dye in Water and Its Antibacterial Activity Against Aater Borne Pathogens

We report the synthesis and application of a novel Exfoliated graphite/Selenium-Zinc oxide (EG/Se-ZnO) nanocomposite for photodegradation of methylene blue dye and its antibacterial activity. The composite was characterized using XRD, FTIR, SEM and TEM. Applicability of EG/ Se-ZnO nanocomposite as photocatalyst was investigated by the photocatalytic degradation of methylene blue as a model for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005